Optics, photonics, atomic and quantum technologies

Optics and photonics are key technologies in most strategic sectors, both for the advances of fundamental research and for the variety of application areas. In the past years, the possibility to functionalise and to engineer materials and components at nanometer scale opened up opportunities for new applications and new ways of radiation-matter interaction. The growing integration of chips on photonic devices will allow overcoming the intrinsic limitations in elaborating, transmitting and sharing information related to specific environments  (e.g.: internet of things). In addition to these important potentialities, quantum technologies offer further opportunities to exploit the control of matter constituents and the quantum mechanics laws permitting to achieve performances incomparable to those based on classical systems. Optical technologies will contribute to tackle fundamental problems such as the Planet sustainable growth through the exemplary change in the systems for energy production and environmental parameters measurement.

The DSFTM has a relevant role in those sectors and, thanks to the transversal properties of those technologies, aims at facing some challenges in the following areas:

  • Optical and photonic systems, multiparameter sensors networks and optoelectronic infrastructures (such as for Smart Cities e Smart Buildings).
  • Photonic technologies for high efficiency energy production, conversion, storage and transportation.
  • Photonic technologies for virtual reality, cognitive photonics and advanced man-machine interfaces.
  • Photonic systems for advanced imaging, non-invasive diagnostics, living matter therapy and manipulation.
  • Dissemination of ultra-precise time and frequency standards.
  • Photonic technologies for the study of matter in extreme conditions (such as new materials synthesis, plasmas, nuclear fusion and charges acceleration).
  • Advanced platforms based on photons and ultra-cold matter for communication networks, simulators and quantum computing.
  • Quantum sensors for high precision time metrology, gravity, electromagnetic fields and physical properties of matter.

Spotlights on research activity

Triple–helical nanowires by tomographic rotatory growth for chiral photonics

We have reported three dimensional triple–helical nanowires, engineered by the innovative tomographic rotatory growth, on the basis of focused ion beam-induced deposition. These three dimensional nanostructures show up to 37% of circular dichroism in a broad range (500–1,000 nm), with a high signal-to-noise ratio (up to 24 dB). Optical activity of up to 8° only due to the circular birefringence is also shown, tracing the way towards chiral photonic devices that can be integrated in optical nanocircuits to modulate the visible light polarization.

Contact person: Vittorianna Tasco, NANOTEC–CNR Lecce
Optics, photonics, atomic and quantum technologies

Nanoscale phase engineering of thermal transport with a Josephson heat modulator

We have realized the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic–flux–dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux–to–temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time–dependent electronic engines.

Contact person: Francesco Giazotto, NANO–CNR Pisa
Optics, photonics, atomic and quantum technologies

Josephson effect in fermionic superfluids across the BEC–BCS crossover

We have reported on the observation of the Josephson effect between two fermionic superfluids coupled through a thin tunneling barrier. We have shown that the relative population and phase are canonically conjugate dynamical variables throughout the crossover from the molecular Bose-Einstein condensate (BEC) to the Bardeen–Cooper–Schrieffer (BCS) superfluid regime. For larger initial excitations from equilibrium, the dynamics of the superfluids become dissipative, which we ascribe to the propagation of vortices through the superfluid bulk. Our results highlight the robust nature of resonant superfluids.

Contact person: Giacomo Roati, INO–CNR Sesto Fiorentino
Optics, photonics, atomic and quantum technologies